RESERCH

ナノテクでありふれた材料をハイテクに

 子供の積木細工のように、「ナノのブロックを使って色々な構造体や機能材料を作りたい」、これはナノテクノロジー研究に携わる大人すべての夢です。私たちの研究室では、安価で手軽な溶液プロセスを使って、ビーカーの中で様々な機能のナノ物質を作ったり、並べたりすることで、夢へ向けたモノ作りを進めています。特に、数原子の厚さの2次元物質(無機ナノシート)に注目し、新規機能の開拓,ナノ構造体の構築,電子材料・エネルギー材料の開発を行っています。

Future Materials from Nano-Building Blocks

Assembly of functional nanoarchitectures, in the same way that children play with building blocks, is one of the dreams of nanotechnology. We are investigating new fabrication procedures for future electronic/energy materials using solution-based bottom-up assembly of functional nanoblocks. The key requirement for such a building-block approach is to create functional nanoblocks with advanced functionalities such as conducting, dielectric, and magnetic properties. In designing new functional materials, we focus on two-dimensional (2D) nanosheets. 2D nanosheets with atomic or molecular thickness have been emerging as important new materials that may impact future devices. In an effort to exploring new functionalities, 2D inorganic nanosheets are important research targets to be pursued because of their structural diversity and electronic properties. We are working on the creation of 2D inorganic nanosheets and the exploration of their novel functionalities in electronic/energy applications.

無機ナノシートの物質設計と精密合成

 2次元ナノ物質は、グラフェンの報告以降、材料科学、ナノエレクトロニクスにおける重要な研究ターゲットして注目されています。我々の研究室では、層状化合物の単層剥離により得られる無機系2次元ナノ物質(酸化物ナノシート)に注目し、第一原理計算を援用した分子設計により精密ドーピングやバンド構造制御を行い、新しい機能のナノシートの創製やグラフェンを凌駕する機能の開拓を目指した研究を進めています。

2D Inorganic Nanosheets: New Flatland to Graphene & beyond?

2D nanosheets encompassing a broad range of novel electronic, magnetic, optical and thermal properties have attracted great interests over the past decade, promising the development of next-generation multifunctional devices. The remarkable properties of graphene have opened up new possibilities of exploring 2D inorganic nanosheets, which offer functional flexibility, new properties, and novel applications. We are working on materials design and tailored synthesis of 2D inorganic nanosheets with novel functionalities.

無機ナノシートの精密集積による高次ナノ構造体の構築

 ナノシートでは、室温・溶液プロセスを用いることで、ナノレベルで組成・構造を精密に制御したナノ構造体や積層ナノ薄膜の構築が可能です。我々の研究室では、組成、構造、機能の異なるナノシートの積層集積により人工超格子を構築し、ナノシートのボトムアップ集積でしか達成しえない特異な構造、機能を有する高機能ナノ構造体の開発を進めています。

New Artificial Materials Design Using 2D Nanosheets

An attractive aspect of 2D inorganic nanosheets is that various nanostructures can be fabricated using them as 2D building blocks in solution. We aim at developing new chemical processes for artificial construction of highly ordered 2D nanoarchitectures, e.g., multilayer, superlattice assemblies, composed of nanosheets and foreign functional modules. Through this unprecedented approach, we will attempt to develop innovative functionalities by making hetero-assembly between different nanosheets/modules, which is nearly impossible for current processes.

無機ナノシートの電子材料,エネルギー材料への応用

 ナノシートは薄さ故に、レゴブロックのように積み重ねるだけで材料間の相互作用を自在に制御でき、新しい機能をデザインすることが可能です。我々の研究室では、ナノシートの2次元電子状態や極薄分子膜という特徴を利用し、Layer-by-Layer集積により構造と電子状態を精密に制御した多層膜や超格子を作製することで、新しい電子材料,エネルギー材料の開発を進めています。

Electronic/Energy Materials from 2D Nanosheets

New functionalities or nanodevices may be designed through the selection of 2D nanosheets and combining other functional materials, and precise control over their arrangement at the molecular scale. Recently, we utilized 2D nanosheets as building blocks in the LEGO-like assembly, and successfully developed various functional nanodevices such as all nanosheet FETs, high-density capacitors, artificial ferroelectrics/multiferroics, spinelectronic devices, Li-ion batteries/solar cells, actuator crystals, etc. Solution processes for artificial construction of precisely controlled nanostructures/interfaces will be developed into a new technique for materials design. Advanced functionalities will be pursued by designing a cooperative interaction between 2D nanosheets and various functional modules. Our new recipe could offer the next big change in electronic and energy/environmental fields in the coming decades.

更新日:

Copyright© 名古屋大学 未来材料・システム研究所 長田研究室 , 2025 All Rights Reserved.