" />

2018 ACS Applied Materials & Interfaces Original

Multifield Control of Domains in a Room-Temperature Multiferroic 0.85BiTi0.1Fe0.8Mg0.1O3–0.15CaTiO3 Thin Film


1976, 'Attention readers', Hydrotechnical Construction, vol. 10, no. 10, pp. 1021-1021 doi:10.1021/acsami.8b05289


 Single-phase materials that combine electric polarization and magnetization are promising for applications in multifunctional sensors, information storage, spintronic devices, etc. Following the idea of a percolating network of magnetic ions (e.g., Fe) with strong superexchange interactions within a structural scaffold with a polar lattice, a solid solution thin film with perovskite structure at a morphotropic phase boundary with a high level of Fe atoms on the B site of perovskite structure is deposited to combine both ferroelectric and ferromagnetic ordering at room temperature with magnetoelectric coupling. In this work, a 0.85BiTi0.1Fe0.8Mg0.1O3–0.15CaTiO3 thin film has been deposited by pulsed laser deposition (PLD). Both the ferroelectricity and the magnetism were characterized at room temperature. Large polarization and a large piezoelectric effective coefficient d33 were obtained. Multifield coupling of the thin film has been characterized by scanning force microscopy. Ferroelectric domains and magnetic domains could be switched by magnetic field (H), electric field (E), mechanical force (F), and, indicating that complex cross-coupling exists among the electric polarization, magnetic ordering and elastic deformation in 0.85BiTi0.1Fe0.8Mg0.1O3–0.15CaTiO3 thin film at room temperature. This work also shows the possibility of writing information with electric field, magnetic field, and mechanical force and then reading data by magnetic field. We expect that this work will benefit information applications.

Copyright© 名古屋大学 未来材料・システム研究所 長田研究室 , 2019 All Rights Reserved.