Koki Sano Yuka Onuma Arazoe Dr. Yasuhiro Ishida Dr. Yasuo Ebina Prof. Dr. Minoru Osada Prof. Dr. Takayoshi Sasaki Dr. Takaaki Hikima Prof. Dr. Takuzo Aida
First published:02 August 2018
https://doi.org/10.1002/anie.201807240
Abstract
In our previous work, we have shown that "electrostatic forces", when generated anisotropically in aqueous media by 2D electrolytes upon cofacial orientation, enable the formation of a hydrogel with an anisotropic parameter, as defined by the ratio of elastic moduli, of 3. Herein, we successfully developed the design strategy for a hydrogel with an anisotropic parameter of no less than 85. This value is not only 28 times greater than that of our previous anisotropic hydrogel but also 6 times larger than the current champion record in synthetic hydrogels (anisotropic parameter = ~15). Firstly, we simply lowered ionic contaminants in the hydrogel and were able to enhance the anisotropic parameter from 3 to 18. Then, we chose a supporting polymer network allowing the hydrogel to carry a higher interior permittivity. Consequently, the anisotropic parameter was further enhanced from 18 to 85. Owing to the enhanced mechanical anisotropy, our new hydrogel displayed a superb ability of seismic isolation.